Enhanced Image Compression Algorithm for Image Processing Applications

نویسنده

  • B. Kranthi
چکیده

Due to the increasing traffic caused by multimedia information and digitized form of representation of images; image compression has become a necessity. New algorithms for image compression based on wavelets have been developed which offers considerable improvement in picture quality at high compression ratios. To achieve lowest errors per compression rate and highest perceptual quality, the existing image compression algorithms are need to be modified. In this paper, with the objective of achieving high image compression ratio with minimum number of errors, the features of existing image compression algorithms like Haar Wavelet Transform are increased and named as Modified Fast Haar Wavelet Transform (MFHWT). The Set Partitioning In Hierarchical Trees (SPIHT) along with Run Length Encoding (RLE) increases the compression ratio without degrading the image quality. Also, the modified algorithm reduces the number of computations in Haar transform, which decreases the processing time. The proposed work was simulated using MALAB and the results shows that the compression ratio increases without affecting the Peak Signal to Noise Ratio (PSNR) standards. KeywordsImage Compression, DWT, MFHWT, ESPIHT, RLE

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey

Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...

متن کامل

آموزش شبکه عصبی MLP در فشرده‌سازی تصاویر با استفاده از روش GSA

Image compression is one of the important research fields in image processing. Up to now, different methods are presented for image compression. Neural network is one of these methods that has represented its good performance in many applications. The usual method in training of neural networks is error back propagation method that its drawbacks are late convergence and stopping in points of lo...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Segmentation Assisted Object Distinction for Direct Volume Rendering

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...

متن کامل

Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing

Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...

متن کامل

Optimization of Energy Consumption in Image Transmission in Wireless Sensor Networks (WSNs) using a Hybrid Method

In wireless sensor networks (WSNs)‎, ‎sensor nodes have limited resources with regard to computation‎, ‎storage‎, ‎communication bandwidth‎, ‎and the most important of all‎, ‎energy supply‎. ‎In addition‎, ‎in many applications of sensor networks‎, ‎we need to send images to a sink node‎. ‎Therefore‎, ‎we have to use methods for sending images in which the number and volume of packets are optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014